Monthly Archives: October 2013

THE VON ARDENNE STUDY

The von Ardenne studies focused on oxygen’s relationship to most major categories of illness. When your blood oxygen goes way down, you get sick, die or at least shorten your life span. This book is a masterful compilation of clinical insights and variations on breathing assessments, cofactors and some techniques of breathing development called Oxygen Multistep Therapy Dr. Manfred von Ardenne was a student of Dr. Otto Warburg. Warburg received the 1931 Nobel Prize for proving that cancer is anaerobic; it cannot survive in a high oxygen environment. Germs, fungi and bacteria are anaerobic as well. Dr. von Ardenne was also inspired by Karl Lohmann who discovered adenosine triphosphate, ATP, which many believe to be the human body’s main energy currency. Dr. von Ardenne was an electron physicist who in addition to his interest in astronomy, developed quite a good reputation for cancer research . He went on to develop a process he called Oxygen Multistep Therapy. In his book of the same name, Dr. von Ardenne addressed some 150 respiratory and blood gas aspects including elements of what we might call respiratory psychophysiology.

BREATHING-CONTROL LOWERS BLOOD PRESSURE

Study:

We hypothesise that routinely applied short sessions of slow and regular breathing can lower blood pressure (BP). Using a new technology BIM (Breathe with Interactive Music), hypertensive patients were guided towards slow and regular breathing. The present study evaluates the efficacy of the BIM in lowering BP. We studied 33 patients (23M/10F), aged 25-75 years, with uncontrolled BP. Patients were randomised into either active treatment with the BIM (n = 18) or a control treatment with a Walkman (n = 15). Treatment at home included either musically-guided breathing exercises with the BIM or listening to quiet music played by a Walkman for 10 min daily for 8 weeks. BP and heart rate were measured both at the clinic and at home with an Omron IC BP monitor. Clinic BP levels were measured at baseline, and after 4 and 8 weeks of treatment. Home BP measurements were taken daily, morning and evening, throughout the study. The two groups were matched by initial BP, age, gender, body mass index and medication status. The BP change at the clinic was -7.5/-4.0 mm Hg in the active treatment group, vs -2.9/-1.5 mm Hg in the control group (P = 0.001 for systolic BP). Analysis of home-measured data showed an average BP change of -5.0/-2.7 mm Hg in the active treatment group and -1.2/+0.9 mm Hg in the control group. Ten out of 18 (56%) were defined as responders in the active treatment group but only two out of 14 (14%) in the control group (P = 0.02). Thus, breathing exercise guided by the BIM device for 10 min daily is an effective non-pharmacological modality to reduce BP.

Source

Internal Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Israel. gross-e@zahav.net.il